
ORSYS - https://www.orsys.be/en/ - info@orsys.be - +32 (0)2 801 13 68 Page 1 / 2

Unix/Linux system developer
Hands-on course of 4 days - 28h
Ref.: LIS - Price 2025: 2 610 (excl. taxes)

TRAINER QUALIFICATIONS
The experts leading the training are
specialists in the covered subjects.
They have been approved by our
instructional teams for both their
professional knowledge and their
teaching ability, for each course
they teach. They have at least five
to ten years of experience in their
field and hold (or have held)
decision-making positions in
companies.

ASSESSMENT TERMS
The trainer evaluates each
participant’s academic progress
throughout the training using
multiple choice, scenarios, hands-
on work and more.
Participants also complete a
placement test before and after the
course to measure the skills they’ve
developed.

TEACHING AIDS AND
TECHNICAL RESOURCES
• The main teaching aids and
instructional methods used in the
training are audiovisual aids,
documentation and course material,
hands-on application exercises and
corrected exercises for practical
training courses, case studies and
coverage of real cases for training
seminars.
• At the end of each course or
seminar, ORSYS provides
participants with a course
evaluation questionnaire that is
analysed by our instructional teams.
• A check-in sheet for each half-day
of attendance is provided at the end
of the training, along with a course
completion certificate if the trainee
attended the entire session.

TERMS AND DEADLINES
Registration must be completed 24
hours before the start of the
training.

ACCESSIBILITY FOR
PEOPLE WITH DISABILITIES
Do you need special accessibility
accommodations? Contact Mrs.
Fosse, Disability Manager, at psh-
accueil@ORSYS.fr to review your
request and its feasibility.

HANDS-ON WORK
Progressive practicals and case studies will enable you to fully understand the presentation
of the UNIX/Linux system programming interface.

THE PROGRAMME
last updated: 05/2024

1) Development method and tools
- The linux distributions, open source software, licenses.
- Compilers and associated tools, profilers and debuggers.
Hands-on work : Use of GDB, cscope and profiling with a simple application.

2) Processes
- The UNIX processes, scheduling processes, priorities and processor affinity.
- Live and death of a process. Fork, exec, exit and wait.
- Security issues. Root and standard user, user ids.
- Namespaces and application mobility.
Hands-on work : Creation of a simple multi-process application. Tests of some security issues
like process running wild and handling with setrlimit(2).

3) Posix Threads
- Programing with threads. Overview of Posix 1c threads.
- Thread creation and termination. Thread scheduling.
- Synchronizing Threads. Mutex and data protection, priority inversion.
- Condition variable and flow control. Using signals and threads.
Hands-on work : A simple multi-thread application using mutexes and condition variables.

4) Files and filesystems
- File handling.
- Filesystems. Accessing metadata. Accessing directories.
- I/O Multiplexing. Using poll and select.
- Signals and events with multiplexed I/O
Hands-on work : A small program using fcntl(2) for file locking and accessing a directory.

5) Inter Process Communication
- Message queues.
- Shared memory.
- Semaphores. Handling multiple semaphore sets.
- Pipes. Standard I/O redirections.
- Signals. UNIX signals implementation.
Hands-on work : Implementation of a client/server use case with the help of various
technologies: message queues, shared memory and semaphores, pipes and signals.

6) Network
- Socket Interface.
- Address and protocol management. TCP/IP interface.



ORSYS - https://www.orsys.be/en/ - info@orsys.be - +32 (0)2 801 13 68 Page 2 / 2

- Network daemons.
- mplementation of network servers and super servers.
Hands-on work : Implementation of our client/server use case with the network interface.

7) Memory management and Time
- Virtual memory.
- Memory allocation.
- Advanced use
- Date and time. Timers and timeout.
- Latencies and determinism.
Hands-on work : Test of various allocations schemes using malloc(3), brk(2) or mmap(2).
Implementing good practice for real-time applications. Using the UNIX time interface to
measure scheduling latency.

8) Advanced linker control
- Security, real-time and multithreading.
- Shared libraries.
Hands-on work : A multi-thread real-time application with a time share thread.
Implementation of a memory allocation tracer with dlopen.

DATES

REMOTE CLASS
2025 : 30 sept., 02 déc.


